Au NPs修饰双亲性无规共聚物复合组装纳米粒子的制备及应用Preparation and application of Au NPs modified amphiphilic random copolymer composite-assembled nanoparticles
沈恒,赵伟
摘要(Abstract):
采用自由基聚合制备了一种双亲性丙烯酸酯无规共聚物PDHES。以氯金酸为前驱体,通过原位还原制备得到金纳米颗粒(Au NPs),并将其负载在PDHES分子链上;通过溶剂诱导方法使负载Au NPs的PDHES自组装形成Au@PDHES复合纳米粒子。探究了氯金酸浓度对Au NPs形成过程及Au@PDHES复合纳米粒子形貌的影响,考察了Au@PDHES对4–硝基苯酚还原反应的催化性能。进一步以Au@PDHES作为颗粒乳化剂稳定油水界面,研究了油水体积比对乳化性能的影响。结果表明:PDHES可将氯金酸前驱体原位还原为Au NPs;自组装形成的Au@PDHES复合纳米粒子呈球形,其平均粒径约为160 nm,Au NPs均匀分布在复合纳米粒子上,该复合纳米粒子对4–硝基苯酚具有良好的催化性能,同时能够形成稳定的水包油型乳液,有望用于油水界面催化及微反应器。
关键词(KeyWords): 双亲共聚物;Au NPs;复合纳米粒子;催化;颗粒乳化剂
基金项目(Foundation):
作者(Author): 沈恒,赵伟
DOI: 10.16572/j.issn1672-2191.202509084
参考文献(References):
- [1]SARDAR R,FUNSTON A M,MULVANEY P,et al.Gold nanoparticles:past,present,and future[J].Langmuir,2009,25(24):13 840–13 851.
- [2]ZHOU W,GAO X,LIU D B,et al.Gold nanoparticles for in vitro diagnostics[J].Chemical Reviews,2015,115(19):10 575–10 636.
- [3]SIBUYI N R S,MOABELO K L,FADAKA A O,et al.Multifunctional gold nanoparticles for improved diagnostic and therapeutic applications:a review[J].Nanoscale Research Letters,2021,16(1):174.
- [4]SHARMA R,RAGAVAN K V,THAKUR M S,et al.Recent advances in nanoparticle based aptasensors for food contaminants[J].Biosensors and Bioelectronics,2015,74:612–627.
- [5]GOGURLA N,KUNDU S C,RAY S K.Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices[J].Nanotechnology,2017,28(14):145 202.
- [6]HANG Y J,WANG A Y,WU N Q.Plasmonic silver and gold nanoparticles:shape-and structure-modulated plasmonic functionality for point-of-caring sensing,bio-imaging and medical therapy[J].Chemical Society Reviews,2024,53(6):2 932–2 971.
- [7]WANG L J,QIANG X,SONG Y L,et al.Green synthesis of gold nanoparticles by phycoerythrin extracted from Solieria tenuis as an efficient catalyst for 4-nitrophenol reduction and degradation of dyes in wastewater[J].Materials Today Sustainability,2023,23:100 435.
- [8]ZHANG Q T,SOMERVILLE R J,CHEN L,et al.Carbonized wood impregnated with bimetallic nanoparticles as a monolithic continuous-flow microreactor for the reduction of 4-nitrophenol[J].Journal of Hazardous Materials,2023,443(Part B):130 270.
- [9]ZHU Q L,XU Q.Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications[J].Chem,2016,1(2):220–245.
- [10]ZHANG Z,CHEN H H,XING C Y,et al.Sodium citrate:a universal reducing agent for reduction/decoration of graphene oxide with Au nanoparticles[J].Nano Research,2011,4(6):599–611.
- [11]HE H B,SHEN X X,NIE Z H.Engineering interactions between nanoparticles using polymers[J].Progress in Polymer Science,2023,143:101 710.
- [12]FAN Z Y,CHEN X L,K?HN SERRANO M,et al.Polymer cages as universal tools for the precise bottom-up synthesis of metal nanoparticles[J].Angewandte Chemie International Edition,2015,54(48):14 539–14 544.
- [13]LACH P,GARCIA-CRUZ A,CANFAROTTA F,et al.Electroactive molecularly imprinted polymer nanoparticles for selective glyphosate determination[J].Biosensors and Bioelectronics,2023,236:115 381.
- [14]NI L,YU C,WEI Q B,et al.Pickering emulsion catalysis:interfacial chemistry,catalyst design,challenges,and perspectives[J].Angewandte Chemie,2022,134(30):e202115885.
- [15]WANG F,TANG J T,LIU H,et al.Self-assembled polymeric micelles as amphiphilic particulate emulsifiers for controllable Pickering emulsions[J].Materials Chemistry Frontiers,2019,3(3):356–364.
- [16]ZOU H B,LI Q B,ZHANG R Y,et al.Amphiphilic covalent organic framework nanoparticles for Pickering emulsion catalysis with size selectivity[J].Angewandte Chemie,2024,136(13):e202314650.
- [17]ZHAO W,ZHANG R L,XU S,et al.Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection[J].Biosensors and Bioelectronics,2018,100:497–503.
- [18]LUO J,ZHANG N,LIU R,et al.In situ green synthesis of Au nanoparticles onto polydopamine-functionalized graphene for catalytic reduction of nitrophenol[J].RSC Advances,2014,4(110):64 816–64 824.